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ON EQUATIONS OF THREE-DIMENSIONAL LAMINAR BOUNDARY 

LAYER OF BODIES OF REVOLUTION 
PMM Vol. 34, Ml, 1970, pp. 145-149 

B. M. BLJLAKH and M. S. SIMKIN 

(Recei%%a~a~ , 4 1969) 

The uniformly accurate equations of a plane uniform laminar boundary layer for a body 
whose profile is sharply curved, are derived in p]. In the present paper the results of p] 
are generalized for the case of a body of revolution in a supersonic gas flow at incidence. 
The most important result lies in the fact that parameters of the gas flow in the boundary 
layer in the domain of sharp curvature of the generatirix of the body of revolution can 

be defined independently in every meridional plane passing through the axis of symmetry 
of the body if the curvature radius of the generatrix of the body becomes a quantity of 

the order of boundary-layer thickness. 

1. We consider a certain body of 
revolution whose curvature x of the 

Fig. 1 

generatrix AOB (Fig. 1) is a continuous function of the coordinate s, measured along 
the generatrix from the point 0,where x attains its greatest value x,,,, and the radius 
of curvature, correspondingly, its minimum value S = (~,~a~)-~. We take the distance 



On equations of three-dimensional Iamfnar boundary layer of bodies of revolution 135 

from point A to point 0, measured along the the generatrix AUB (Fig. I). as the char- 
acteristic length 1, and will refer all lengths to i,. 

We shall represent the curvature ?c in the vicinity of point 0 in the form 

x = X (S, 6) 6’, S = ss-1, 0 < K (S, 6) Q 1 for -i <S < 1 (Lfj 

(for details see p]). 

2, Now let a uniform stream of viscous perfect gas flow past a body of rotation having 
the indicated generatrix. In the system of coordinates in which s is measured along the 

generatrix of the body, n is normal to it and the angle cp defines the meridional plane 

(Fig. Z), the equations of continuity, momentum, energy and the equation of state of gas 
have the form 
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Here U, u, w are the velocity components in the direction of increasing s, n, cp , 
respectively, p is the density, P is the pressure, T is the temperature, CT is the Prandtl 

number, pL, h are the coefficients of viscosity, y is the adiabatic index, R is the Rey- 
nolds number formed from the characteristic parameters of flow, .r is the distance from 

the body surface to the axis of symmetry, % is the angle of inclination of the tangent 
to the generatrix of the body and the axis of symmetry. Derivatives are denoted by sub- 

scripts, for example, u.% = du i an. 

In equations (2. I)-(& 6) all lengths are referred to IO% velocities to ‘v,, density to PO, 

pressure to poVOv,“, temperature to To = TO2 c;’ (Cp is the specific heat of the gas at con- 

stant pressure}, and coefficients of viscosity to PO, The notation for the dimensionless 
quantities is retained also for dimensional ones. As characteristic parameters Y,, PO, Pr 
it is convenient in the present case to take the corresponding values of V, p, P in the 

stream directly ahead of point 0 for r# = n (Fig.2). 

t$ As is known, for the sobrtion of the problem of flow past bodies in the case 
E < i, one distinguishes the boundary layer - a region of thickness 0 (e) directly adja- 

cent to the body surface and the “external flow” region. In the latter region the solution 

to the system of Eqs. (Xl)-(2.6) is sought in the form of the asymptotic expansion [2] 

f f& n* g?, 4 - Fl (8, a, 9) -t- e I?z (SI fi, rp1 -i- II. (3.U 

Here # stands for u, u, w, p, p, T. 

In the boundary-layer region. where viscous forces are of the same order as inertial 
forces, a new variabZe N = nE -I is introduced, and the solution is sought in the form of 

the asymptotic expansion 

f (8, n, g)t e) - Ir (s, N, ‘P) + a fi (8, N, VP) + ... (3.2) 

u - ev, _t F2C2 + . ..) 

where f stands for u, m, p, p, T. 
Equations for the first terms of expansion (3.1) are the Euler equations ; the equations 

for the first terms of the expansion (3.2) are the Prandtl equations which have in our 
case the form 
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(3.3) 

Equations (3.3) are correct to within a factor 1 + 0 (a) for a + 0 and can be used 

for the determination of the gas motion in a boundary layer for small but finite a in 
those cases when 3c does not appreciably exceed unity. However, if @- 1, it is appro- 

priate to regard the problem as depending upon two parameters E and 6 p]. 
The purpose of what follows is to obtain equations for the motion of the gas in the 

vicinity of line s = 0 (Fig. 2) under the condition a, 6 -) 0, that are correct to within 

a factor 1 -+- 0 (a) and suitable for utilization for small but finite E and 6. When con- 
structing an asymptotic theory of gas motion in the vicinity of line s = 0 we shall con- 
sider two cases 

lim aP = 0, a, 6 --, 0 and lim UP= PO < 00, a, 6 --+ 0 

4, The case lim &‘=O for a, 6 + 0. Since in transition from the point of the gene- 
ratrix, defined by coordinate S = A-1 = - 1 to the points ,$ = + 1 (cp = con&), the 

tangent to the generatrix rotates through a finite angle, the inviscid supersonic flow cor- 

responding to the first term of the expansion (3.1) undergoes a finite change in gas para- 
meters in this segment, in particular of the pressure p. In the bounda~ layer pN = 0 

ahead of and behind certain ne~ghborh~d of line s = 0, so that aiso in a layer of thick- 
ness 0 (E) in the vicinity of line s = U the quantity p = 0 (1) changes by a finite 
amount; that is pe = 0 (6-l) or ps = 0 (11, --l<s<i 

For the other gas parameters we assume that differentiation with respect to S = ~6-1 

for -1 < 9 < 1 does not change the order of functions for e + 0, 6 -, 0. The gas flow 
in the boundary layer ahead of line s = 0 is a flow with a strong shear. Undoubtedly, 
the flow has the same character also in the vicinity of line s = 0 . We therefore assume 
that in the vicinity of line s = 0, as well as ahead of it, differentiation of functions 
with respect to N = na -l does not change the order of functions for N = 0 (1) and - 1 

< S < 1. Let us transform Eqs, (2.1)-(2.5) to the variables S = s 6-I and N = ne-‘. 
We can write the continui~ equation (2.1) in the form 

[(r + a N cos 6) PI.& + ](r + a N coa 0) (1 + li: a@1 N) p u6e--‘], + 6 ](i + KNeB-“)X 
xpwl, = 0 (4.1) 

Since 6~~~ + 00 as 6 + 0, E + 0 , V= 0 (ES-~), let us introduce u* = 0 Ii) by the 
substitution 

v = ES-1 v* (ct.2) 

Equation (4.1) takes the form 

(rp~)~ + [r(i + K N&6’) Pt’*]N + 6 (P+, = 0 (a) (4.3) 

Equations (2.2)-(-2.5) with (4, ‘2) taken into account, in variables S and N can be 
presented in the form 

(i.4) 



138 B. ,M. Rulakh and M. S. Simkin 

f 

uu 

o If zGe6-l 
6W (%g - sin 0w) 

? 1 
+ 

+ pa 
I + KN&-’ 

= 6 (w+) N t 0 (e) 

= 6 [a-’ &TN) N + r-‘W (P@ - PT,) + jJ fa$ + WN’)~+ o(a) 

(cont.) 

(4.5) 

(4.6) 

(4.7) 

On the surface of the body iY = 0, u = u* = w = 0 and Eq. (4.5) is reduced to the 
form 

P~~&(~u~)~~O{e) (4.8) 
The left side of (4.8) contains finite quantity, and the right side is infinitely small 

for a -+ 0, 6 + 0, so that near the wall there is a layer where derivatives of functions 
with respect to N are of different order than the functions themselves. It follows from 
(4.8) that in this layer it is necessary to introduce the variable 

11 2 N&-‘/z = r@’ @S 
(4.9) 

The continuity equation (2.1) shows that Y = 0 (e 6’jz) for n = 0 (1). With the sub- 
stitution u = eS+ 0 u and transition to the variables S, II Eqs. (X.1)-(2.5) take the form 

(~16)~ + Ir (1 4 Kr@--l’p) pv”J, + 6 (pw), = Q (E) (4.10) 

pf, _ K p$ a~-‘~S z 0 (a@*) + 0 (e%-1) (4.11) 

+ 
% 
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u&s 

1 + Kqe&+ + v*p*) = 6-WTJ ri i- 

i-F (y;2 + 1”s2) + 6 [I;lw (p - PT,)J + e&-” IpK (T,p - ZUU,)] + 

+ 0 (ii’“) + 0 (e”&-1) (4.14) 

6, The case lim &S-l= PO < CC for F, 6 -+ 0. Let us represent 6 in the form of the pro- 
duct ~fi-~, where b = 0 (1) when E, 6 -* 0, and substitute 6 = e@-r into Eqs. (4. a)- 
-(4.24). As a result we obtain the equations of gas motion in the form 

(‘Up)s + [r(l -t KNb) pv*]N = 0 (F) (5.1) 

(5.2) 

(5.3) 

(5.fk) 
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(5.5) 
(5.6) 

(5.7) 

(5.9 

(5.9) 

(5.10) 

All equations in Sects.4 and 5 are obtained with uniform accuracy defined by the 
factor 1 + 0 (8). 

8, It is noted that in Eqs. (5. I)-( 5.10) the derivatives of the function in respect to 
cp sought for, are absent. This means that with the accuracy accepted in the theory of 
boundary layer, the gas flow parameters in the boundary layer in meridional planes 

(9 = const) can be defined inde~ndently. (We consider, of course, the neighborh~d of 
the line s = 0 where the generatrix of the body of revolution is greatly curved). In Eqs. 

(4.3)-(4.14) the derivatives of the quantities sought for in respect to rp have the factor 
S, therefore the relation between the gas flow parameters in meridional planes 9, = const 

is weak if 6 is small (This dependence, apparently, can be considered by means of 
iteration). 
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